Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
Más filtros













Base de datos
Intervalo de año de publicación
1.
Biochem Soc Trans ; 52(2): 553-565, 2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38563502

RESUMEN

Given the current paucity of effective treatments in many neurological disorders, delineating pathophysiological mechanisms among the major psychiatric and neurodegenerative diseases may fuel the development of novel, potent treatments that target shared pathways. Recent evidence suggests that various pathological processes, including bioenergetic failure in mitochondria, can perturb the function of fast-spiking, parvalbumin-positive neurons (PV+). These inhibitory neurons critically influence local circuit regulation, the generation of neuronal network oscillations and complex brain functioning. Here, we survey PV+ cell vulnerability in the major neuropsychiatric, and neurodegenerative diseases and review associated cellular and molecular pathophysiological alterations purported to underlie disease aetiology.


Asunto(s)
Mitocondrias , Enfermedades Neurodegenerativas , Neuronas , Parvalbúminas , Humanos , Parvalbúminas/metabolismo , Enfermedades Neurodegenerativas/metabolismo , Mitocondrias/metabolismo , Animales , Neuronas/metabolismo , Enfermedades del Sistema Nervioso/metabolismo , Encéfalo/metabolismo
2.
Front Neurosci ; 18: 1287228, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38495109

RESUMEN

Introduction: Expression of light sensitive ion channels by selected neurons has been achieved by viral mediated transduction with gene constructs, but for this to have therapeutic uses, for instance in treating epilepsy, any adverse effects of viral infection on the cerebral cortex needs to be evaluated. Here, we assessed the impact of adeno-associated virus 8 (AAV8) carrying DNA code for a soma targeting light activated chloride channel/FusionRed (FR) construct under the CKIIa promoter. Methods: Viral constructs were harvested from transfected HEK293 cells in vitro and purified. To test functionality of the opsin, cultured rodent neurons were transduced and the light response of transduced neurons was assayed using whole-cell patch-clamp recordings. In vivo expression was confirmed by immunofluorescence for FR. Unilateral intracranial injections of the viral construct were made into the mouse neocortex and non-invasive fluorescence imaging of FR expression made over 1-4 weeks post-injection using an IVIS Spectrum system. Sections were also prepared from injected mouse cortex for immunofluorescence staining of FR, alongside glial and neuronal marker proteins. Results: In vitro, cortical neurons were successfully transduced, showing appropriate physiological responses to light stimulation. Following injections in vivo, transduction was progressively established around a focal injection site over a 4-week period with spread of transduction proportional to the concentration of virus introduced. Elevated GFAP immunoreactivity, a marker for reactive astrocytes, was detected near injection sites associated with, and proportional to, local FR expression. Similarly, we observed reactive microglia around FR expressing cells. However, we found that the numbers of NeuN+ neurons were conserved close to the injection site, indicating that there was little or no neuronal loss. In control mice, injected with saline only, astrocytosis and microgliosis was limited to the immediate vicinity of the injection site. Injections of opsin negative viral constructs resulted in comparable levels of astrocytic reaction as seen with opsin positive constructs. Discussion: We conclude that introduction of an AAV8 vector transducing expression of a transgene under a neuron specific promotor evokes a mild inflammatory reaction in cortical tissue without causing extensive short-term neuronal loss. The expression of an opsin in addition to a fluorescent protein does not significantly increase neuroinflammation.

3.
Commun Biol ; 6(1): 1078, 2023 10 23.
Artículo en Inglés | MEDLINE | ID: mdl-37872380

RESUMEN

Mitochondrial diseases comprise a common group of neurometabolic disorders resulting from OXPHOS defects, that may manifest with neurological impairments, for which there are currently no disease-modifying therapies. Previous studies suggest inhibitory interneuron susceptibility to mitochondrial impairment, especially of parvalbumin-expressing interneurons (PV+). We have developed a mouse model of mitochondrial dysfunction specifically in PV+ cells via conditional Tfam knockout, that exhibited a juvenile-onset progressive phenotype characterised by cognitive deficits, anxiety-like behaviour, head-nodding, stargazing, ataxia, and reduced lifespan. A brain region-dependent decrease of OXPHOS complexes I and IV in PV+ neurons was detected, with Purkinje neurons being most affected. We validated these findings in a neuropathological study of patients with pathogenic mtDNA and POLG variants showing PV+ interneuron loss and deficiencies in complexes I and IV. This mouse model offers a drug screening platform to propel the discovery of therapeutics to treat severe neurological impairment due to mitochondrial dysfunction.


Asunto(s)
Enfermedades Mitocondriales , Parvalbúminas , Ratones , Animales , Humanos , Parvalbúminas/metabolismo , Neuronas/metabolismo , Interneuronas/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Mitocondrias
4.
Front Neurosci ; 17: 1249973, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37746155

RESUMEN

Introduction: The protein fasciculation and elongation zeta-1 (FEZ1) is involved in axon outgrowth but potentially interacts with various proteins with roles ranging from intracellular transport to transcription regulation. Gene association and other studies have identified FEZ1 as being directly, or indirectly, implicated in schizophrenia susceptibility. To explore potential roles in normal early human forebrain neurodevelopment, we mapped FEZ1 expression by region and cell type. Methods: All tissues were provided with maternal consent and ethical approval by the Human Developmental Biology Resource. RNAseq data were obtained from previously published sources. Thin paraffin sections from 8 to 21 post-conceptional weeks (PCW) samples were used for RNAScope in situ hybridization and immunohistochemistry against FEZ1 mRNA and protein, and other marker proteins. Results: Tissue RNAseq revealed that FEZ1 is highly expressed in the human cerebral cortex between 7.5-17 PCW and single cell RNAseq at 17-18 PCW confirmed its expression in all neuroectoderm derived cells. The highest levels were found in more mature glutamatergic neurons, the lowest in GABAergic neurons and dividing progenitors. In the thalamus, single cell RNAseq similarly confirmed expression in multiple cell types. In cerebral cortex sections at 8-10 PCW, strong expression of mRNA and protein appeared confined to post-mitotic neurons, with low expression seen in progenitor zones. Protein expression was observed in some axon tracts by 16-19 PCW. However, in sub-cortical regions, FEZ1 was highly expressed in progenitor zones at early developmental stages, showing lower expression in post-mitotic cells. Discussion: FEZ1 has different expression patterns and potentially diverse functions in discrete forebrain regions during prenatal human development.

5.
Int J Mol Sci ; 24(16)2023 Aug 09.
Artículo en Inglés | MEDLINE | ID: mdl-37628780

RESUMEN

Despite considerable breakthroughs in Parkinson's disease (PD) research, understanding of non-motor symptoms (NMS) in PD remains limited. The lack of basic level models that can properly recapitulate PD NMS either in vivo or in vitro complicates matters. Even so, recent research advances have identified cardiovascular NMS as being underestimated in PD. Considering that a cardiovascular phenotype reflects sympathetic autonomic dysregulation, cardiovascular symptoms of PD can play a pivotal role in understanding the pathogenesis of PD. In this study, we have reviewed clinical and non-clinical published papers with four key parameters: cardiovascular disease risks, electrocardiograms (ECG), neurocardiac lesions in PD, and fundamental electrophysiological studies that can be linked to the heart. We have highlighted the points and limitations that the reviewed articles have in common. ECG and pathological reports suggested that PD patients may undergo alterations in neurocardiac regulation. The pathological evidence also suggested that the hearts of PD patients were involved in alpha-synucleinopathy. Finally, there is to date little research available that addresses the electrophysiology of in vitro Parkinson's disease models. For future reference, research that can integrate cardiac electrophysiology and pathological alterations is required.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad de Parkinson , Sinucleinopatías , Humanos , Enfermedades Cardiovasculares/etiología , Enfermedad de Parkinson/complicaciones , Corazón , Electrocardiografía
6.
Pharmacol Biochem Behav ; 223: 173532, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36822254

RESUMEN

Aberrant cortical oscillations in the beta and gamma range are associated with symptoms of schizophrenia and other psychiatric conditions. We have thus investigated the ability of anterior cingulate cortex (ACC) in vitro to generate beta and gamma oscillations, and how these are affected by Group II metabotropic glutamate (mGlu) receptor activation and blockade of N-methyl-d-aspartate (NMDA) receptors. Activation of Group II mGlu receptors, and mGlu2 specifically, with orthosteric agonists reduced the power of both beta and gamma oscillations in ACC without a significant effect on oscillation peak frequencies. The NMDA receptor blocker phencyclidine (PCP), known to evoke certain schizophrenia-like symptoms in humans, elevated the power of beta oscillations in ACC and caused a shift in oscillation frequency from the gamma range to the beta range. These enhanced beta oscillations were reduced by the Group II mGlu receptor agonists. These results show that Group II mGlu receptors, and specifically mGlu2, modulate network oscillations. Furthermore, attenuation of the effect of PCP suggests that mGlu2 receptors may stabilise aberrant network activity. These results underline the importance of Group II mGlu receptors, and particularly mGlu2, as targets for the treatment of neuropsychiatric and neurodegenerative diseases.


Asunto(s)
Receptores de Glutamato Metabotrópico , Humanos , Ratas , Animales , Receptores de Glutamato Metabotrópico/agonistas , Fenciclidina , Giro del Cíngulo/metabolismo , N-Metilaspartato
7.
Am J Pathol ; 193(1): 11-26, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36243043

RESUMEN

Patients with cholestatic liver disease, including those with primary biliary cholangitis, can experience symptoms of impaired cognition or brain fog. This phenomenon remains unexplained and is currently untreatable. Bile duct ligation (BDL) is an established rodent model of cholestasis. In addition to liver changes, BDL animals develop cognitive symptoms early in the disease process (before development of cirrhosis and/or liver failure). The cellular mechanisms underpinning these cognitive symptoms are poorly understood. Herein, the study explored the neurocognitive symptom manifestations, and tested potential therapies, in BDL mice, and used human neuronal cell cultures to explore translatability to humans. BDL animals exhibited short-term memory loss and showed reduced astrocyte coverage of the blood-brain barrier, destabilized hippocampal network activity, and neuronal senescence. Ursodeoxycholic acid (first-line therapy for most human cholestatic diseases) did not reverse symptomatic or mechanistic aspects. In contrast, obeticholic acid (OCA), a farnesoid X receptor agonist and second-line anti-cholestatic agent, normalized memory function, suppressed blood-brain barrier changes, prevented hippocampal network deficits, and reversed neuronal senescence. Co-culture of human neuronal cells with either BDL or human cholestatic patient serum induced cellular senescence and increased mitochondrial respiration, changes that were limited again by OCA. These findings provide new insights into the mechanism of cognitive symptoms in BDL animals, suggesting that OCA therapy or farnesoid X receptor agonism could be used to limit cholestasis-induced neuronal senescence.


Asunto(s)
Colestasis , Memoria a Corto Plazo , Humanos , Ratones , Animales , Colestasis/tratamiento farmacológico , Ácido Quenodesoxicólico/farmacología , Conductos Biliares/cirugía , Hígado , Ligadura
8.
Front Neurosci ; 15: 718311, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34566564

RESUMEN

Neuromodulation is an established treatment for numerous neurological conditions, but to expand the therapeutic scope there is a need to improve the spatial, temporal and cell-type specificity of stimulation. Optogenetics is a promising area of current research, enabling optical stimulation of genetically-defined cell types without interfering with concurrent electrical recording for closed-loop control of neural activity. We are developing an open-source system to provide a platform for closed-loop optogenetic neuromodulation, incorporating custom integrated circuitry for recording and stimulation, real-time closed-loop algorithms running on a microcontroller and experimental control via a PC interface. We include commercial components to validate performance, with the ultimate aim of translating this approach to humans. In the meantime our system is flexible and expandable for use in a variety of preclinical neuroscientific applications. The platform consists of a Controlling Abnormal Network Dynamics using Optogenetics (CANDO) Control System (CS) that interfaces with up to four CANDO headstages responsible for electrical recording and optical stimulation through custom CANDO LED optrodes. Control of the hardware, inbuilt algorithms and data acquisition is enabled via the CANDO GUI (Graphical User Interface). Here we describe the design and implementation of this system, and demonstrate how it can be used to modulate neuronal oscillations in vitro and in vivo.

9.
Sci Rep ; 11(1): 10452, 2021 05 17.
Artículo en Inglés | MEDLINE | ID: mdl-34001919

RESUMEN

MicroRNAs are non-coding RNAs that act to downregulate the expression of target genes by translational repression and degradation of messenger RNA molecules. Individual microRNAs have the ability to specifically target a wide array of gene transcripts, therefore allowing each microRNA to play key roles in multiple biological pathways. miR-324 is a microRNA predicted to target thousands of RNA transcripts and is expressed far more highly in the brain than in any other tissue, suggesting that it may play a role in one or multiple neurological pathways. Here we present data from the first global miR-324-null mice, in which increased excitability and interictal discharges were identified in vitro in the hippocampus. RNA sequencing was used to identify differentially expressed genes in miR-324-null mice which may contribute to this increased hippocampal excitability, and 3'UTR luciferase assays and western blotting revealed that two of these, Suox and Cd300lf, are novel direct targets of miR-324. Characterisation of microRNAs that produce an effect on neurological activity, such as miR-324, and identification of the pathways they regulate will allow a better understanding of the processes involved in normal neurological function and in turn may present novel pharmaceutical targets in treating neurological disease.


Asunto(s)
Excitabilidad Cortical/genética , Hipocampo/fisiología , MicroARNs/metabolismo , Oxidorreductasas actuantes sobre Donantes de Grupos Sulfuro/genética , Receptores Inmunológicos/genética , Animales , Línea Celular , Femenino , Masculino , Ratones , Ratones Noqueados , MicroARNs/genética , Neocórtex/fisiología , RNA-Seq , Transducción de Señal/genética
10.
Neurobiol Dis ; 149: 105226, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33347975

RESUMEN

Abnormal excitability in cortical networks has been reported in patients and animal models of Alzheimer's disease (AD), and other neurodegenerative conditions. Whether hyperexcitability is a core feature of alpha(α)-synucleinopathies, including dementia with Lewy bodies (DLB) is unclear. To assess this, we used two murine models of DLB that express either human mutant α-synuclein (α-syn) the hA30P, or human wild-type α-syn (hWT-α-syn) mice. We observed network hyperexcitability in vitro in young (2-5 months), pre-symptomatic transgenic α-syn mice. Interictal discharges (IIDs) were seen in the extracellular local field potential (LFP) in the hippocampus in hA30P and hWT-α-syn mice following kainate application, while only gamma frequency oscillations occurred in control mice. In addition, the concentration of the GABAA receptor antagonist (gabazine) needed to evoke IIDs was lower in slices from hA30P mice compared to control mice. hA30P mice also showed increased locomotor activity in the open field test compared to control mice. Intracellular recordings from CA3 pyramidal cells showed a more depolarised resting membrane potential in hA30P mice. Quadruple immunohistochemistry for human α-syn, and the mitochondrial markers, porin and the complex IV enzyme cytochrome c oxidase subunit 1 (COX1) in parvalbumin (PV+)-expressing interneurons showed that 25% of PV+ cells contained human α-syn in hA30P mice. While there was no change in PV expression, COX1 expression was significantly increased in PV+ cells in hA30P mice, perhaps reflecting a compensatory change to support PV+ interneuron activity. Our findings suggest that hippocampal network hyperexcitability may be an important early consequence of α-syn-mediated impairment of neuronal/synaptic function, which occurs without any overt loss of PV interneurons. The therapeutic benefit of targeting network excitability early in the disease stage should be explored with respect to α-synucleinopathies such as DLB.


Asunto(s)
Ritmo Gamma/fisiología , Hipocampo/metabolismo , Mutación/fisiología , Red Nerviosa/metabolismo , alfa-Sinucleína/biosíntesis , Factores de Edad , Animales , Relación Dosis-Respuesta a Droga , Femenino , Ritmo Gamma/efectos de los fármacos , Expresión Génica , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Humanos , Ácido Kaínico/toxicidad , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Red Nerviosa/efectos de los fármacos , Red Nerviosa/fisiopatología , Técnicas de Cultivo de Órganos , alfa-Sinucleína/genética
11.
Front Neurosci ; 14: 579867, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33041770

RESUMEN

Changes in sleep behavior and sleep-related cortical activity have been reported in conditions associated with abnormal alpha-synuclein (α-syn) expression, in particular Parkinson's disease (PD) and dementia with Lewy bodies (DLB). Notably, changes can occur in patients years before the onset of cognitive decline. Sleep-related network oscillations play a key role in memory function, but how abnormal α-syn impacts the generation of such activity is currently unclear. To determine whether early changes in sleep-related network activity could also be observed, prior to any previously reported cognitive dysfunction, we used mice that over-express human mutant α-syn (A30P). Recordings in vivo were performed under urethane anesthesia in the medial prefrontal cortex (mPFC) and CA1 region of the hippocampus in young male (2.5 - 4 months old) A30P and age-matched wild type (WT) mice. We found that the slow oscillation (SO) < 1 Hz frequency was significantly faster in both the mPFC and hippocampus in A30P mice, and Up-state-associated fast oscillations at beta (20 - 30 Hz) and gamma (30 - 80 Hz) frequencies were delayed relative to the onset of the Up-state. Spindle (8 - 15 Hz) activity in the mPFC was also altered in A30P mice, as spindles were shorter in duration and had reduced density compared to WT. These changes demonstrate that dysregulation of sleep-related oscillations occurs in young A30P mice long before the onset of cognitive dysfunction. Our data suggest that, as seen in patients, changes in sleep-related oscillations are an early consequence of abnormal α-syn aggregation in A30P mice.

12.
Aging Cell ; 19(10): e13188, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32915495

RESUMEN

Chronic inflammation is a common feature of many age-related conditions including neurodegenerative diseases such as Alzheimer's disease. Cellular senescence is a state of irreversible cell-cycle arrest, thought to contribute to neurodegenerative diseases partially via induction of a chronic pro-inflammatory phenotype. In this study, we used a mouse model of genetically enhanced NF-κB activity (nfκb1-/- ), characterized by low-grade chronic inflammation and premature aging, to investigate the impact of inflammaging on cognitive decline. We found that during aging, nfkb1-/- mice show an early onset of memory loss, combined with enhanced neuroinflammation and increased frequency of senescent cells in the hippocampus and cerebellum. Electrophysiological measurements in the hippocampus of nfkb1-/- mice in vitro revealed deficits in gamma frequency oscillations, which could explain the decline in memory capacity. Importantly, treatment with the nonsteroidal anti-inflammatory drug (NASID) ibuprofen reduced neuroinflammation and senescent cell burden resulting in significant improvements in cognitive function and gamma frequency oscillations. These data support the hypothesis that chronic inflammation is a causal factor in the cognitive decline observed during aging.


Asunto(s)
Antiinflamatorios no Esteroideos/farmacología , Inflamación/tratamiento farmacológico , Trastornos de la Memoria/tratamiento farmacológico , FN-kappa B/metabolismo , Envejecimiento/efectos de los fármacos , Envejecimiento/fisiología , Animales , Modelos Animales de Enfermedad , Hipocampo/efectos de los fármacos , Hipocampo/fisiopatología , Inflamación/metabolismo , Masculino , Trastornos de la Memoria/fisiopatología , Ratones , Ratones Endogámicos C57BL
13.
Diagnostics (Basel) ; 10(9)2020 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-32825520

RESUMEN

Despite improvements in diagnostic criteria for dementia with Lewy bodies (DLB), the ability to discriminate DLB from Alzheimer's disease (AD) and other dementias remains suboptimal. Electroencephalography (EEG) is currently a supportive biomarker in the diagnosis of DLB. We performed a systematic review to better clarify the diagnostic and prognostic role of EEG in DLB and define the clinical correlates of various EEG features described in DLB. MEDLINE, EMBASE, and PsycINFO were searched using search strategies for relevant articles up to 6 August 2020. We included 43 studies comparing EEG in DLB with other diagnoses, 42 of them included a comparison of DLB with AD, 10 studies compared DLB with Parkinson's disease dementia, and 6 studies compared DLB with other dementias. The studies were visual EEG assessment (6), quantitative EEG (35) and event-related potential studies (2). The most consistent observation was the slowing of the dominant EEG rhythm (<8 Hz) assessed visually or through quantitative EEG, which was observed in ~90% of patients with DLB and only ~10% of patients with AD. Other findings based on qualitative rating, spectral power analyses, connectivity, microstate and machine learning algorithms were largely heterogenous due to differences in study design, EEG acquisition, preprocessing and analysis. EEG protocols should be standardized to allow replication and validation of promising EEG features as potential biomarkers in DLB.

14.
Eur J Neurosci ; 52(2): 2915-2930, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-31891427

RESUMEN

The role of dopamine in regulating sleep-state transitions during, both natural sleep and under anaesthesia, is still unclear. Recording in vivo in the rat mPFC under urethane anaesthesia, we observed predominantly slow wave activity (SWA) of <1 Hz in the local field potential interrupted by occasional spontaneous transitions to a low-amplitude-fast (LAF) pattern of activity. During periods of SWA, transitions to LAF activity could be rapidly and consistently evoked by electrical stimulation of the ventral tegmental area (VTA). Spontaneous LAF activity, and that evoked by stimulation of the VTA, consisted of fast oscillations similar to those seen in the rapid eye movement (REM)-like sleep state. Spontaneous and VTA stimulation-evoked LAF activity occurred simultaneously along the dorsoventral extent of all mPFC subregions. Evoked LAF activity depended on VTA stimulation current and could be elicited using either regular (25-50 Hz) or burst stimulation patterns and was reproducible upon repeated stimulation. Simultaneous extracellular single-unit recordings showed that during SWA, presumed pyramidal cells fired phasically and almost exclusively on the Up state, while during both spontaneous and VTA-evoked LAF activity, they fired tonically. The transition to LAF activity evoked by VTA stimulation depended on dopamine D1 -like receptor activation as it was almost completely blocked by systemic administration of the D1 -like receptor antagonist SCH23390. Overall, our data demonstrate that activation of dopamine D1 -like receptors in the mPFC is important for regulating sleep-like state transitions.


Asunto(s)
Anestesia , Área Tegmental Ventral , Animales , Dopamina , Estimulación Eléctrica , Corteza Prefrontal , Ratas , Ratas Sprague-Dawley , Receptores de Dopamina D1 , Sueño , Uretano/farmacología
15.
Clin Neurophysiol ; 129(6): 1209-1220, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29656189

RESUMEN

OBJECTIVE: We investigated for quantitative EEG (QEEG) differences between Alzheimer's disease (AD), dementia with Lewy bodies (DLB) and Parkinson's disease dementia (PDD) patients and healthy controls, and for QEEG signatures of cognitive fluctuations (CFs) in DLB. METHODS: We analysed eyes-closed, resting state EEGs from 18 AD, 17 DLB and 17 PDD patients with mild dementia, and 21 age-matched controls. Measures included spectral power, dominant frequency (DF), frequency prevalence (FP), and temporal DF variability (DFV), within defined EEG frequency bands and cortical regions. RESULTS: DLB and PDD patients showed a leftward shift in the power spectrum and DF. AD patients showed greater DFV compared to the other groups. In DLB patients only, greater DFV and EEG slowing were correlated with CFs, measured by the clinician assessment of fluctuations (CAF) scale. The diagnostic accuracy of the QEEG measures was 94% (90.4-97.9%), with 92.26% (80.4-100%) sensitivity and 83.3% (73.6-93%) specificity. CONCLUSION: Although greater DFV was only shown in the AD group, within the DLB group a positive DFV - CF correlation was found. QEEG measures could classify DLB and AD patients with high sensitivity and specificity. SIGNIFICANCE: The findings add to an expanding literature suggesting that EEG is a viable diagnostic and symptom biomarker in dementia, particularly DLB.


Asunto(s)
Enfermedad de Alzheimer/diagnóstico , Encéfalo/fisiopatología , Cognición/fisiología , Enfermedad por Cuerpos de Lewy/diagnóstico , Enfermedad de Parkinson/diagnóstico , Anciano , Anciano de 80 o más Años , Enfermedad de Alzheimer/fisiopatología , Diagnóstico Diferencial , Electroencefalografía , Femenino , Humanos , Enfermedad por Cuerpos de Lewy/fisiopatología , Masculino , Enfermedad de Parkinson/fisiopatología , Sensibilidad y Especificidad
16.
Neuroscience ; 377: 161-173, 2018 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-29524634

RESUMEN

Intracellular accumulation of alpha-synuclein (α-syn) is a key pathological process evident in Lewy body dementias (LBDs), including Parkinson's disease dementia (PDD) and dementia with Lewy bodies (DLB). LBD results in marked cognitive impairments and changes in cortical networks. To assess the impact of abnormal α-syn expression on cortical network oscillations relevant to cognitive function, we studied changes in fast beta/gamma network oscillations in the hippocampus in a mouse line that over-expresses human mutant α-syn (A30P). We found an age-dependent reduction in the power of the gamma (20-80 Hz) frequency oscillations in slices taken from mice aged 9-16 months (9+A30P), that was not present in either young 2-6 months old (2+A30P) mice, or in control mice at either age. The mitochondrial blockers potassium cyanide and rotenone both reduced network oscillations in a concentration-dependent manner in aged A30P mice and aged control mice but slices from A30P mice showed a greater reduction in the oscillations. Histochemical analysis showed an age-dependent reduction in cytochrome c oxidase (COX) activity, suggesting a mitochondrial dysfunction in the 9+A30P group. A deficit in COX IV expression was confirmed by immunohistochemistry. Overall, our data demonstrate an age-dependent impairment in mitochondrial function and gamma frequency activity associated with the abnormal expression of α-syn. These findings provide mechanistic insights into the consequences of over-expression of α-syn which might contribute to cognitive decline.


Asunto(s)
Ritmo Gamma , Hipocampo/fisiopatología , Mitocondrias/fisiología , Deficiencias en la Proteostasis/fisiopatología , alfa-Sinucleína/metabolismo , Envejecimiento/patología , Envejecimiento/fisiología , Animales , Modelos Animales de Enfermedad , Femenino , Hipocampo/efectos de los fármacos , Hipocampo/patología , Humanos , Masculino , Ratones Endogámicos C57BL , Ratones Transgénicos , Mitocondrias/efectos de los fármacos , Mitocondrias/patología , Enfermedades Mitocondriales/patología , Enfermedades Mitocondriales/fisiopatología , Deficiencias en la Proteostasis/patología , Técnicas de Cultivo de Tejidos , alfa-Sinucleína/genética
17.
eNeuro ; 4(1)2017.
Artículo en Inglés | MEDLINE | ID: mdl-28275720

RESUMEN

The anterior cingulate cortex (ACC) is vital for a range of brain functions requiring cognitive control and has highly divergent inputs and outputs, thus manifesting as a hub in connectomic analyses. Studies show diverse functional interactions within the ACC are associated with network oscillations in the ß (20-30 Hz) and γ (30-80 Hz) frequency range. Oscillations permit dynamic routing of information within cortex, a function that depends on bandpass filter-like behavior to selectively respond to specific inputs. However, a putative hub region such as ACC needs to be able to combine inputs from multiple sources rather than select a single input at the expense of others. To address this potential functional dichotomy, we modeled local ACC network dynamics in the rat in vitro. Modal peak oscillation frequencies in the ß- and γ-frequency band corresponded to GABAAergic synaptic kinetics as seen in other regions; however, the intrinsic properties of ACC principal neurons were highly diverse. Computational modeling predicted that this neuronal response diversity broadened the bandwidth for filtering rhythmic inputs and supported combination-rather than selection-of different frequencies within the canonical γ and ß electroencephalograph bands. These findings suggest that oscillating neuronal populations can support either response selection (routing) or combination, depending on the interplay between the kinetics of synaptic inhibition and the degree of heterogeneity of principal cell intrinsic conductances.


Asunto(s)
Ritmo beta/fisiología , Ritmo Gamma/fisiología , Giro del Cíngulo/fisiología , Neuronas/fisiología , Animales , Análisis por Conglomerados , Simulación por Computador , Ácido Glutámico/metabolismo , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Modelos Neurológicos , Ratas , Receptores de GABA-A/metabolismo , Receptores de Ácido Kaínico/metabolismo , Técnicas de Cultivo de Tejidos
18.
J Neurophysiol ; 117(3): 1126-1142, 2017 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-28003411

RESUMEN

Cortical slow oscillations (0.1-1 Hz), which may play a role in memory consolidation, are a hallmark of non-rapid eye movement (NREM) sleep and also occur under anesthesia. During slow oscillations the neuronal network generates faster oscillations on the active Up-states and these nested oscillations are particularly prominent in the PFC. In rodents the medial prefrontal cortex (mPFC) consists of several subregions: anterior cingulate cortex (ACC), prelimbic (PrL), infralimbic (IL), and dorsal peduncular cortices (DP). Although each region has a distinct anatomy and function, it is not known whether slow or fast network oscillations differ between subregions in vivo. We have simultaneously recorded slow and fast network oscillations in all four subregions of the rodent mPFC under urethane anesthesia. Slow oscillations were synchronous between the mPFC subregions, and across the hemispheres, with no consistent amplitude difference between subregions. Delta (2-4 Hz) activity showed only small differences between subregions. However, oscillations in the spindle (6-15 Hz)-, beta (20-30 Hz), gamma (30-80 Hz)-, and high-gamma (80-150 Hz)-frequency bands were consistently larger in the dorsal regions (ACC and PrL) compared with ventral regions (IL and DP). In dorsal regions the peak power of spindle, beta, and gamma activity occurred early after onset of the Up-state. In the ventral regions, especially the DP, the oscillatory power in the spindle-, beta-, and gamma-frequency ranges peaked later in the Up-state. These results suggest variations in fast network oscillations within the mPFC that may reflect the different functions and connectivity of these subregions.NEW & NOTEWORTHY We demonstrate, in the urethane-anesthetized rat, that within the medial prefrontal cortex (mPFC) there are clear subregional differences in the fast network oscillations associated with the slow oscillation Up-state. These differences, particularly between the dorsal and ventral subregions of the mPFC, may reflect the different functions and connectivity of these subregions.


Asunto(s)
Anestésicos Intravenosos/farmacología , Sincronización Cortical/efectos de los fármacos , Corteza Prefrontal/anatomía & histología , Corteza Prefrontal/efectos de los fármacos , Uretano/farmacología , Animales , Carbocianinas/farmacocinética , Sincronización Cortical/fisiología , Electroencefalografía , Masculino , Ratas , Estadísticas no Paramétricas
19.
J Physiol ; 593(16): 3597-615, 2015 Aug 15.
Artículo en Inglés | MEDLINE | ID: mdl-26041504

RESUMEN

KEY POINTS: Fast network oscillations in the beta (20-30 Hz) frequency range can be evoked with combined activation of muscarinic and kainate receptors in different subregions of the medial prefrontal cortex (mPFC). Subregional differences were observed as the oscillations in the dorsal prelimbic cortex (PrL) were smaller in magnitude than those in the ventral dorsopeduncular (DP) region, and these differences persisted in trimmed slices containing only PrL and DP regions. Oscillations in both regions were dependent upon GABAA and AMPA receptor activation but NMDA receptor blockade decreased oscillations only in the DP region. Subregional differences in neuronal properties of the presumed pyramidal cells were found between PrL and DP, with many more cells in DP firing rhythmically compared to the PrL region. Presumed inhibitory synaptic potentials (IPSPs) recorded from principal cells were more rhythmic and coherent, and significantly larger in amplitude, in the DP region; the data suggest that variation in the patterns of activity between subregions may reflect distinct functional roles. ABSTRACT: Fast network oscillations in the beta (20-30 Hz) and low gamma (30-80 Hz) range underlie higher cognitive functions associated with the medial prefrontal cortex (mPFC) including attention and working memory. Using a combination of kainate (KA, 200 nm) and the cholinergic agonist carbachol (Cb, 10 µm) fast network oscillations, in the beta frequency range, were evoked in the rat mPFC in vitro. Oscillations were elicited in the prelimbic (PrL), infralimbic (IL) and the dorsopeduncular (DP) cortex, with the largest oscillations observed in DP cortex. Oscillations in both the PrL and DP were dependent, with slightly different sensitivities, on γ-aminobutyric acid (GABA)A , α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) and kainate receptors, but only oscillations in the DP were significantly reduced by N-methyl-d-aspartate (NMDA) receptor blockade. Intracellular recordings showed that 9/20 regular spiking (RS) cells in the PrL exhibited a notable cAMP-dependent hyperpolarisation activated current (Ih ) in contrast to 16/17 in the DP cortex. Extracellular single unit recordings showed that the majority of cells in the PrL, and DP regions had interspike firing frequencies (IFFs) at beta (20-30 Hz) frequencies and fired at the peak negativity of the field oscillation. Recordings in DP revealed presumed inhibitory postsynaptic potentials (IPSPs) that were larger in amplitude and more rhythmic than those in the PrL region. Our data suggest that each PFC subregion may be capable of generating distinct patterns of network activity with different cell types involved. Variation in the properties of oscillations evoked in the PrL and DP probably reflects the distinct functional roles of these different PFC regions.


Asunto(s)
Corteza Prefrontal/fisiología , Animales , Carbacol/farmacología , Potenciales Postsinápticos Inhibidores , Ácido Kaínico/farmacología , Masculino , Neuronas/fisiología , Ratas , Receptores AMPA/fisiología , Receptores de GABA-A/fisiología , Receptores de Ácido Kaínico/fisiología
20.
PLoS Comput Biol ; 8(2): e1002362, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22346741

RESUMEN

In networks of excitatory and inhibitory neurons with mutual synaptic coupling, specific drive to sub-ensembles of cells often leads to gamma-frequency (25-100 Hz) oscillations. When the number of driven cells is too small, however, the synaptic interactions may not be strong or homogeneous enough to support the mechanism underlying the rhythm. Using a combination of computational simulation and mathematical analysis, we study the breakdown of gamma rhythms as the driven ensembles become too small, or the synaptic interactions become too weak and heterogeneous. Heterogeneities in drives or synaptic strengths play an important role in the breakdown of the rhythms; nonetheless, we find that the analysis of homogeneous networks yields insight into the breakdown of rhythms in heterogeneous networks. In particular, if parameter values are such that in a homogeneous network, it takes several gamma cycles to converge to synchrony, then in a similar, but realistically heterogeneous network, synchrony breaks down altogether. This leads to the surprising conclusion that in a network with realistic heterogeneity, gamma rhythms based on the interaction of excitatory and inhibitory cell populations must arise either rapidly, or not at all. For given synaptic strengths and heterogeneities, there is a (soft) lower bound on the possible number of cells in an ensemble oscillating at gamma frequency, based simply on the requirement that synaptic interactions between the two cell populations be strong enough. This observation suggests explanations for recent experimental results concerning the modulation of gamma oscillations in macaque primary visual cortex by varying spatial stimulus size or attention level, and for our own experimental results, reported here, concerning the optogenetic modulation of gamma oscillations in kainate-activated hippocampal slices. We make specific predictions about the behavior of pyramidal cells and fast-spiking interneurons in these experiments.


Asunto(s)
Ondas Encefálicas/fisiología , Región CA3 Hipocampal/fisiología , Modelos Neurológicos , Animales , Channelrhodopsins , Biología Computacional , Simulación por Computador , Ácido Kaínico/farmacología , Luz , Macaca , Ratones , Ratones Endogámicos C57BL , Análisis de la Célula Individual , Sinapsis/fisiología , Corteza Visual/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA